

- scale

$G_{CO_2} = CO_2$ storage resource (mass)
$A_t = total area$
h_{a} = gross formation thickness
ϕ_{tot} = total porosity
$\rho = CO_2$ density

$E_A =$	net-to-gross area
$E_h =$	net-to-gross thickness
E _{φtot}	= effective-to-total porosi
$\dot{E_v} =$	volumetric displacement
$E_d =$	microscopic displacement

$\mathbf{X} \in \mathbf{TL}$ NETL Storage CO₂ Resource Estimation Excel aNalysis (SCREEN)

Sean Sanguinito, Angela Goodman, Jonathan Levine, and Emily Dixon

ta Inp	outs						
n							
Jane S	cientist						
riskany	Formation						
8/15/	/2015						
S							
denositi	onal environn	nent					
acpositi							
P ₉₀ val	ues						
astics:	Shallow						
Sh	nelf						
	[
Autopopulated Use		User Sp	pecified				
) 10	P ₉₀	P ₁₀	P ₉₀	X ₁₀	X ₉₀	μ _x	σχ
.20	0.80	0	0	-1.39	1.39	0.00	1.08
.21	0.76	0	0	-1.32	1.15	-0.09	0.97
.62	0.78	0	0	0.49	1.27	0.88	0.30
.18	0.63	0	0	-1.52	0.53	-0.49	0.80
.39	0.82	0	0	-0.45	1.52	0.53	0.77
o to "Fo ues whi iations t to step	ormation Data ich will autopc for step 4 belo 4	' tab to opulate ow. If user					

3						
e parameters						
	Autopo	pulated	User Su	pecified		
km²)	100		1(00		
	Mean	Std Dev	Mean	Std Dev		
(m)	50	0	50	0		
(%)	10.00	0	10	0		
MPa)	20	0	20	0		
(°C)	100	0	100	0		

Figure 4. Image of "Input" tab in NETL SCREEN spreadsheet.

_								
V a gy	alues y and deposition Page and Page values	onal environn ues	nent					
	10 70							
	Clastics: Sh	Shallow elf						
	Autopo	pulated	User Sp	pecified				
	P ₁₀	P ₉₀	P ₁₀	P ₉₀	X ₁₀	X ₉₀	μ _X	σχ
	0.20	0.80	0	0	-1.39	1.39	0.00	1.08
	0.21	0.76	0	0	-1.32	1.15	-0.09	0.97
y	0.62	0.78	0	0	0.49	1.27	0.88	0.30
	0.18	0.63	0	0	-1.52	0.53	-0.49	0.80
	0.39	0.82	0	0	-0.45	1.52	0.53	0.77

Figure 5 (above): Zoomed in view of storage efficiency inputs. Efficiency values range between 0 (0% efficiency) and 1 (100% efficiency). Figure 6 (left): Gaussian function showing P_{10} and P_{90} range. Figure 7 (below): Zoomed in view of storage parameters. Storage parameters must be input as mean and standard deviations

neters					
ted from	sten 3				
ly enter s	torage param	eters			
	.				
		Autopopulated		User S	pecified
	(km ²)	100		1(00
		Mean Std Dev		Mean	Std Dev
6S*	(m)	50	0	50	0
/*	(%)	10.00	0	10	0
	(MPa)	20	0	20	0
, [†]	(MPa) (°C)	20 100	0	20 100	0

261-272.

DOE-NETL (U.S. Department of Energy – National Energy Technology Laboratory – Office of Fossil Energy), 2012. United States Carbon Utilization and Storage Atlas.

Duan, Z., and Sun, R., 2003, An improved model calculating CO₂ solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar: Chemical Geology, v. 193, I. 3-4, p. 257-271.

Goodman, A., Hakala, A., Bromhal, G., Deel, D., Rodosta, T., Frailey, S., Small, M., Allen, D., Romanov, V., Fazio, J., Huerta, N., McIntyre, D., Kutchko, B., and Guthrie, G., 2011, U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale: International Journal of Greenhouse Gas Control, v. 5, p. 952-965.

IEA GHG (International Energy Agency Greenhouse Gas R&D Programme), 2009, Development of Storage Coefficients for CO₂ Storage in Deep Saline Formations: Technical Study, Report No. 2009/13.

This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education.

NATIONAL ENERGY TECHNOLOGY LABORATORY

Albany, OR • Fairbanks, AK • Morgantown, WV • Pittsburgh, PA • Houston, TX

Figure 8. GoldSim model layout. Note: inputs from Excel are used to generate distributions which are then used to calculate CO_2 resource (mass).

GoldSim

• Monte Carlo sampling (n=10,000) using the following equation:

 $CO_{2} = \frac{1}{\left(1 + e^{\left(-E_{hg}\right)}\right)} * \frac{1}{\left(1 + e^{\left(-E_{\phi tot}\right)}\right)} * \frac{1}{\left(1 + e^{\left(-E_{V}\right)}\right)} * \frac{1}{\left(1 + e^{\left(-E_{D}\right)}\right)} * A_{t} * h_{g} * \phi_{tot} * \rho$

• Calculates the statistical P_{10} , P_{50} , and P_{90} probability values of volumetric CO_2

Figure 9. Sensitivity analysis plot. CO_2 storage values normalized to one million realizations vs. number of realizations for that simulation.

Future Work

• Scale: Add National and Site scale estimations • Reservoir: Develop tool for shale formations • Automation: Add user requested features (e.g. multiple regions)

References

Aitchison, J., and Shen, S.M., 1980, Logistic-normal distributions: Some properties and uses: Biometrika, v. 67, p.